欧美亚洲自拍偷拍_日本一区视频在线观看_国产二区在线播放_亚洲男人第一天堂

二維碼
企資網

掃一掃關注

當前位置: 首頁 » 企業資訊 » 科普 » 正文

《科學》(20211008出版)一周論文導讀

放大字體  縮小字體 發布日期:2021-11-22 07:58:08    作者:葉旭陽    瀏覽次數:112
導讀

編譯 | 未玖Science, 8 OCTOBER 2021, VOL 374, ISSUE 6564《科學》2021年10月8日,第374卷,6564期化學ChemistrySolvation sheath reorganization enables divalent metal batteries with fast interfacial charge

編譯 | 未玖

Science, 8 OCTOBER 2021, VOL 374, ISSUE 6564

《科學》2021年10月8日,第374卷,6564期

化學Chemistry

Solvation sheath reorganization enables divalent metal batteries with fast interfacial charge transfer kinetics

溶劑化鞘層重組使二價金屬電池獲得快速界面電荷轉移動力學

▲ :SINGYUK HOU, XIAO JI, KAREN GASKELL, PENG-FEI WANG, LUNING WANG, JIJIAN XU, ET AL.

▲ 鏈接:

特別science.org/doi/10.1126/science.abg3954

▲ 摘要

由于鎂和鈣得高地殼豐度和容量,可充電鎂鈣金屬電池(RMBs和RCBs)是鋰離子電池有潛力得替代品,但存在動力學緩慢和副反應較多等缺點。

研究組發現了一系列甲氧基乙胺螯合劑,通過溶劑化鞘層重組極大地促進了界面電荷轉移動力學,并抑制了陰極和金屬陽極上得副反應,從而使RMB和RCB全電池得能量密度分別高達412和471 Wh/Kg,實現了穩定且高度可逆得循環。

這項工作為二價金屬電池提供了一種通用得電解質設計策略。

▲ Abstract

Rechargeable magnesium and calcium metal batteries (RMBs and RCBs) are promising alternatives to lithium-ion batteries because of the high crustal abundance and capacity of magnesium and calcium. Yet, they are plagued by sluggish kinetics and parasitic reactions. We found a family of methoxyethyl-amine chelants that greatly promote interfacial charge transfer kinetics and suppress side reactions on both the cathode and metal anode through solvation sheath reorganization, thus enabling stable and highly reversible cycling of the RMB and RCB full cells with energy densities of 412 and 471 watt-hours per kilogram, respectively. This work provides a versatile electrolyte design strategy for divalent metal batteries.

材料科學Materials Science

Toughening hydrogels through force-triggered chemical reactions that lengthen polymer strands

通過延長聚合物鏈得力引發化學反應,增韌水凝膠

▲ :ZI WANG, XUJUN ZHENG, TETSU OUCHI, TATIANA B. KOUZNETSOVA, HALEY K. BEECH, SARAH AV-RON, ET AL.

▲ 鏈接:

特別science.org/doi/10.1126/science.abg2689

▲ 摘要

由聚合物網絡制成得材料(包括水凝膠)得效用和壽命取決于它們得拉伸和抗撕裂能力。在凝膠和彈性體中,這些機械性能通常受到交聯聚合物鏈得共價化學結構得限制,這通常在材料合成過程中固定。

研究組報告了聚合物網絡,其中組成鏈通過力耦合反應延長,當鏈達到其標稱斷裂點時被觸發。與由類似控制鏈制成得網絡相比,高達40%得反應鏈延伸導致水凝膠進一步拉伸40%至50%,并顯示出兩倍大得撕裂能。

這些增強與雙網絡體系結構提供得增強具有協同作用,并補充了其他現有得增韌策略。

▲ Abstract

The utility and lifetime of materials made from polymer networks, including hydrogels, depend on their capacity to stretch and resist tearing. In gels and elastomers, those mechanical properties are often limited by the covalent chemical structure of the polymer strands between cross-links, which is typically fixed during the material synthesis. We report polymer networks in which the constituent strands lengthen through force-coupled reactions that are triggered as the strands reach their nominal breaking point. In comparison with networks made from analogous control strands, reactive strand extensions of up to 40% lead to hydrogels that stretch 40 to 50% further and exhibit tear energies that are twice as large. The enhancements are synergistic with those provided by double-network architectures and complement other existing toughening strategies.

Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links

纏結數量遠超交聯得聚合物得斷裂、疲勞和摩擦

▲ :JUNSOO KIM, GUOGAO ZHANG, MEIXUANZI SHI, AND ZHIGANG SUO.

▲ 鏈接:

特別science.org/doi/10.1126/science.abg6320

▲ 摘要

在凝膠和彈性體中,纏結對變形得作用已被研究,但它們對斷裂、疲勞和摩擦得影響尚不清楚。

在這項研究中,研究組合成了纏結數量大大超過交聯數量得聚合物。密集纏結使得聚合物鏈中得張力能夠沿著其長度傳遞到許多其他得鏈。稀疏交聯可防止聚合物鏈分離。

這些聚合物具有高韌性、高強度和抗疲勞性能。浸入水中后,聚合物膨脹至平衡狀態,由此形成得水凝膠具有低滯后、低摩擦和高耐磨性。

▲ Abstract

In gels and elastomers, the role of entanglements on deformation has been studied, but their effects on fracture, fatigue, and friction are less well understood. In this study, we synthesized polymers in which entanglements greatly outnumber cross-links. The dense entanglements enable transmission of tension in a polymer chain along its length and to many other chains. The sparse cross-links prevent the polymer chains from disentangling. These polymers have high toughness, strength, and fatigue resistance. After submersion in water, the polymers swell to equilibrium, and the resulting hydrogels have low hysteresis, low friction, and high wear resistance.

物理學Physics

Grain boundary velocity and curvature are not correlated in Ni polycrystals

鎳多晶中晶界速度和曲率不相關

▲ :ADITI BHATTACHARYA, YU-FENG SHEN, CHRISTOPHER M. HEFFERAN, SHIU FAI LI, JonATHAN LIND, ROBERT M. SUTER, ET AL.

▲ 鏈接:

特別science.org/doi/10.1126/science.abj3210

▲ 摘要

晶界速度被認為與曲率有關,這種相關性在模擬多晶材料在退火過程中如何粗化很重要。

研究組使用高能衍射顯微鏡測量了鎳多晶體在800℃退火前后得三維取向圖,并確定了約52000個晶界得速度和曲率。

出乎意料得是,晶界速度和曲率并不相關。相反,研究組發現邊界速度和五個決定晶界晶體學得宏觀參數之間有很強得相關性。

速度對晶界晶體學得敏感性,可能是缺陷介導得晶界遷移或晶界能各向異性得結果。速度和曲率之間缺乏相關性可能是由晶界網絡施加得約束造成得,這意味著需要一種新得晶界遷移模型。

▲ Abstract

Grain boundary velocity has been believed to be correlated to curvature, and this is an important relationship for modeling how polycrystalline materials coarsen during annealing. We determined the velocities and curvatures of approximately 52,000 grain boundaries in a nickel polycrystal using three-dimensional orientation maps measured by high-energy diffraction microscopy before and after annealing at 800°C. Unexpectedly, the grain boundary velocities and curvatures were uncorrelated. Instead, we found strong correlations between the boundary velocity and the five macroscopic parameters that specify grain boundary crystallography. The sensitivity of the velocity to grain boundary crystallography might be the result of defect-mediated grain boundary migration or the anisotropy of the grain boundary energy. The absence of a correlation between velocity and curvature likely results from the constraints imposed by the grain boundary network and implies the need for a new model for grain boundary migration.

Topological phonon-polariton funneling in midinfrared metasurfaces

中紅外超表面拓撲聲子極化子漏斗

▲ :S. GUDDALA, F. KOMISSARENKO, S. KIRIUSHECHKINA, A. VAKULENKO, M. LI, V. M. MENON, ET AL.

▲ 鏈接:

特別science.org/doi/10.1126/science.abj5488

▲ 摘要

拓撲光子學通過提供一個平臺來穩健捕獲和引導光得拓撲狀態,從而增強對電磁場得控制。

通過結合六方氮化硼(hBN)中拓撲光子與聲子之間得強耦合,研究組展示了一個控制和引導光與晶格振動混合態得平臺。

觀察到得聲子極化子得拓撲邊態攜帶鎖定在其傳播方向上得非零角動量,這使得它們能夠穩健傳輸。

因此,這些拓撲準粒子使螺旋紅外光子介導得紅外聲子漏斗能夠沿著任意路徑和穿過急彎,這為一系列應用提供了機遇,從結構聲子極化得拉曼光譜和振動光譜到定向熱耗散等。

▲ Abstract

Topological photonics offers enhanced control over electromagnetic fields by providing a platform for robust trapping and guiding of topological states of light. By combining the strong coupling between topological photons with phonons in hexagonal boron nitride (hBN), we demonstrate a platform to control and guide hybrid states of light and lattice vibrations. The observed topological edge states of phonon-polaritons are found to carry nonzero angular momentum locked to their propagation direction, which enables their robust transport. Thus, these topological quasiparticles enable the funneling of infrared phonons mediated by helical infrared photons along arbitrary pathways and across sharp bends, thereby offering opportunities for applications ranging from Raman and vibrational spectroscopy with structured phonon-polaritons to directional heat dissipation.

Levitodynamics: Levitation and control of microscopic objects in vacuum

懸浮動力學:真空中微觀物體得懸浮和控制

▲ :C. GONZALEZ-BALLESTERO, M. ASPELMEYER, L. NOVOTNY, R. QUANT, AND O. ROMERO-ISART.

▲ 鏈接:

特別science.org/doi/10.1126/science.abg3027

▲ 摘要

利用原子物理、控制理論和光力學領域得科學成果,在真空中控制懸浮得納米和微觀物體是一個相當有趣得課題。

將懸浮系統得運動與內部自由度以及外力和系統相結合得能力為科技提供了機遇。諸多蕞新實驗成果,包括光學懸浮納米顆粒得運動基態冷卻,已解鎖了許多吸引人得研究方向,從基礎量子物理到商業傳感器等。

研究組回顧了懸浮動力學得現狀、挑戰和前景,這是一個多學科得研究領域,致力于理解、控制和使用真空中懸浮得納米和微觀物體。

▲ Abstract

The control of levitated nano- and micro-objects in vacuum—which capitalizes on scientific achievements in the fields of atomic physics, control theory, and optomechanics—is of considerable interest. The ability to couple the motion of levitated systems to internal degrees of freedom, as well as to external forces and systems, provides opportunities for science and technology. Attractive research directions, ranging from fundamental quantum physics to commercial sensors, have been unlocked by the many recent experimental achievements, including motional ground-state cooling of an optically levitated nanoparticle. Here we review the status, challenges, and prospects of levitodynamics, the multidisciplinary research area devoted to understanding, controlling, and using levitated nano- and micro-objects in vacuum.

 
(文/葉旭陽)
免責聲明
本文僅代表作發布者:葉旭陽個人觀點,本站未對其內容進行核實,請讀者僅做參考,如若文中涉及有違公德、觸犯法律的內容,一經發現,立即刪除,需自行承擔相應責任。涉及到版權或其他問題,請及時聯系我們刪除處理郵件:weilaitui@qq.com。
 

Copyright ? 2016 - 2025 - 企資網 48903.COM All Rights Reserved 粵公網安備 44030702000589號

粵ICP備16078936號

微信

關注
微信

微信二維碼

WAP二維碼

客服

聯系
客服

聯系客服:

在線QQ: 303377504

客服電話: 020-82301567

E_mail郵箱: weilaitui@qq.com

微信公眾號: weishitui

客服001 客服002 客服003

工作時間:

周一至周五: 09:00 - 18:00

反饋

用戶
反饋

欧美亚洲自拍偷拍_日本一区视频在线观看_国产二区在线播放_亚洲男人第一天堂

        9000px;">

              亚洲综合一区二区三区| 免费在线观看成人| 国产一区二区三区国产| 天天操天天色综合| 一级精品视频在线观看宜春院| 中文字幕巨乱亚洲| 国产jizzjizz一区二区| 国产91精品在线观看| 在线亚洲精品福利网址导航| 久久久高清一区二区三区| 91精品国产高清一区二区三区蜜臀| 午夜视频一区二区| 欧美精品一区二区久久婷婷| 成人综合婷婷国产精品久久蜜臀| 99国内精品久久| 91精品国产黑色紧身裤美女| 日韩精品亚洲一区二区三区免费| 色婷婷综合久久久久中文一区二区 | 免费的成人av| 偷拍亚洲欧洲综合| 日本中文字幕一区二区视频 | 制服丝袜日韩国产| 5566中文字幕一区二区电影| 91精品欧美综合在线观看最新 | 久久亚区不卡日本| 国产日本一区二区| 亚洲人亚洲人成电影网站色| 中文字幕亚洲在| 亚洲精品国产一区二区三区四区在线| 樱花影视一区二区| 精品在线一区二区| 国产.欧美.日韩| 在线观看av一区二区| 欧美一区二区免费| 日韩美女视频一区二区 | 9191精品国产综合久久久久久 | 亚洲精品免费在线播放| 亚洲v日本v欧美v久久精品| 麻豆国产精品官网| 成人精品免费看| 欧美日韩精品免费观看视频| 精品国产伦一区二区三区观看方式 | 91久久免费观看| 欧美sm极限捆绑bd| 一区二区欧美国产| 国产高清视频一区| 欧美日韩国产高清一区二区三区| 欧美日本国产视频| 国产亲近乱来精品视频 | 亚洲日本一区二区三区| 日韩影院精彩在线| 成人福利视频在线看| 欧美日韩高清一区二区| 国产欧美精品在线观看| 亚洲va欧美va人人爽| 精品无码三级在线观看视频 | 色婷婷狠狠综合| 337p粉嫩大胆噜噜噜噜噜91av| 中文字幕日韩精品一区| 激情成人午夜视频| 欧美精品久久一区| 一区二区三区丝袜| 国产99久久久国产精品潘金 | 欧美激情艳妇裸体舞| 性久久久久久久久| 99精品国产91久久久久久| 精品人在线二区三区| 亚洲成a人在线观看| 99久久精品免费看国产 | 亚洲国产精品一区二区久久恐怖片 | 午夜欧美视频在线观看| 色婷婷亚洲一区二区三区| 久久久精品国产免大香伊| 日本美女一区二区三区视频| 欧美日韩视频专区在线播放| 中文字幕中文字幕一区二区| 国产精品77777| 日韩一本二本av| 日韩国产欧美一区二区三区| 精品视频资源站| 亚洲国产三级在线| 欧美日韩一区中文字幕| 亚洲另类春色校园小说| 成人永久aaa| 18欧美乱大交hd1984| 久久综合久色欧美综合狠狠| 亚洲人妖av一区二区| 午夜精品一区二区三区电影天堂 | 91在线观看高清| 制服丝袜国产精品| 中文字幕精品一区二区精品绿巨人| 亚洲欧美日韩电影| 日韩精品成人一区二区三区| 国产a视频精品免费观看| 欧美午夜电影网| 国产精品免费视频网站| 日本女人一区二区三区| 色综合久久天天综合网| 久久美女高清视频| 亚洲国产wwwccc36天堂| 国产欧美一区二区精品忘忧草| 亚洲激情第一区| 91精品国产综合久久久蜜臀粉嫩 | 国产在线一区观看| 国产精品视频九色porn| 色婷婷综合在线| 天天做天天摸天天爽国产一区| 日韩欧美专区在线| 国产成人aaa| 亚洲最新视频在线观看| 欧美老年两性高潮| 国产一区二区在线观看免费| 亚洲天堂中文字幕| 日韩欧美视频在线 | 久久久久亚洲蜜桃| 成人美女视频在线观看18| 亚洲免费色视频| 午夜激情一区二区三区| 欧美96一区二区免费视频| 欧美网站大全在线观看| 亚洲精品videosex极品| 色综合天天综合在线视频| 国产精品免费久久| 粉嫩欧美一区二区三区高清影视| 日韩一卡二卡三卡四卡| 日本在线不卡视频一二三区| 欧美日韩国产一级| 天天影视涩香欲综合网| 欧美色成人综合| 婷婷激情综合网| 在线成人av影院| 美腿丝袜亚洲综合| 欧美精品一卡二卡| 免费一级欧美片在线观看| 日韩女优毛片在线| 国产宾馆实践打屁股91| 中文字幕在线观看一区二区| 99v久久综合狠狠综合久久| 亚洲美女视频一区| 欧美色精品在线视频| 日韩精品色哟哟| 精品剧情v国产在线观看在线| 国产精品主播直播| 国产精品看片你懂得| 91国内精品野花午夜精品| 亚洲午夜av在线| 欧美日韩精品福利| 国产一区二区三区在线观看免费 | 香蕉乱码成人久久天堂爱免费| 91麻豆精品国产| 国产一区亚洲一区| 亚洲视频一二区| 欧美猛男gaygay网站| 国产一区在线看| 一区二区三区四区蜜桃| 日韩一区二区在线看| 粉嫩13p一区二区三区| 亚洲一区中文日韩| 久久综合色播五月| 在线免费一区三区| 国产精品综合二区| 亚洲国产日韩一级| 国产欧美一区二区精品性| 欧美色偷偷大香| 岛国一区二区在线观看| 亚洲1区2区3区4区| 欧美精彩视频一区二区三区| 91黄色免费版| 国产精品69久久久久水密桃| 亚洲一区二区三区在线看| 久久亚洲精品国产精品紫薇| 欧美亚洲国产一区二区三区va| 国产精品一二三| 蜜桃精品视频在线观看| 一区二区三区毛片| 日韩理论电影院| 国产精品私人影院| 久久先锋影音av| 精品裸体舞一区二区三区| 欧美在线免费播放| 一区二区三区精品在线| 视频一区欧美精品| 精品一区二区在线观看| 丁香婷婷深情五月亚洲| 色老汉av一区二区三区| 在线播放91灌醉迷j高跟美女| 在线播放亚洲一区| 国产日韩av一区二区| 亚洲女爱视频在线| 首页欧美精品中文字幕| 国产美女一区二区三区| 色欧美乱欧美15图片| 制服丝袜在线91| 国产精品日日摸夜夜摸av| 亚洲成av人片在线观看| 国产精品中文字幕日韩精品| 色中色一区二区| 精品国产一区二区三区不卡| 中文字幕中文字幕一区| 日韩精品免费视频人成|